## $\alpha,\beta$ -Unsaturated Nitriles in Heterocyclic Synthesis. Novel Synthesis of Pyridines and Thieno[2,3-b]pyridine Derivatives

Galal E. H. ELGEMEIE,\* Hassan A. ELFAHHAM,† and Hesham A. NABEY†
Chemistry Department, Faculty of Science, Bani Suef, Egypt
†Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
(Received February 15, 1988)

Arylmethylenecyanothioacetamide reacts with ethyl acetoacetate and acetylacetone to give the corresponding 3-cyano-2(1H)-pyridinethione derivatives, which can be alkylated at sulfur atom and cyclized into the corresponding thieno[2,3-b]pyridine derivatives.

 $\alpha,\beta$ -Unsaturated nitriles are versatile reagents that have been extensively utilized in heterocyclic synthesis. <sup>1-3)</sup> We have previously reported several novel syntheses of azoles, <sup>4)</sup> azines, <sup>5)</sup> and azoloazines <sup>6)</sup> utilizing  $\alpha,\beta$ -unsaturated nitriles as starting components. In continuation of this work, we report here the results of our investigation into the utility of the readily obtainable arylmethylenecyanothioacetamide in heterocyclic synthesis. The investigation have resulted in the development of a novel procedure for the synthesis of pyridines and thieno[2,3-b]pyridine derivatives. The compounds obtained seem promising for further

chemical transformations and for biological evaluation studies.

Thus, it has been found that benzylidencyanothioacetamide (1a) reacted with acetylacetone (2a) in boiling ethanol containing catalytic ammounts of piperidine to yield a product with the molecular formula  $C_{15}H_{12}N_2OS$  (M<sup>+</sup> 268). Structure 4a was considered for the product. <sup>1</sup>H NMR spectroscopy was used to confirm this structure for the product. Thus, <sup>1</sup>H NMR revealed two singlets at  $\delta$  1.90 and 2.55 assignable for two methyl groups, a broad band at  $\delta$  13.86 assignable to NH group, and a multiplet at  $\delta$  6.24—

Table 1. Analytical Data of Compounds 4, 5, and 6

| Compound   | l Ar                                                             | X                  | R  | Yield      | Yield Mp             |                          | Found/Calcd(%) |             |     |
|------------|------------------------------------------------------------------|--------------------|----|------------|----------------------|--------------------------|----------------|-------------|-----|
|            |                                                                  |                    |    | %          | $\theta_{\rm m}$ /°C | С                        | Н              | N           | m/z |
| 4a         | $C_6H_5$                                                         | COCH <sub>3</sub>  |    | 75         | 198—199              | 67.6                     | 4.1            | 10.0        | 268 |
|            |                                                                  |                    |    |            |                      | 67.2                     | 4.5            | 10.4        |     |
| <b>4</b> b | $4-CH_3OC_6H_4$                                                  | $COCH_3$           |    | 70         | 235—237              | 64.0                     | 4.5            | 9.0         |     |
|            |                                                                  |                    |    |            |                      | 64.4                     | 4.7            | 9.4         |     |
| <b>4</b> c | $4-(CH_3)_2NC_6H_4$                                              | $COCH_3$           |    | 80         | 248—250              | 65.8                     | 5.8            | 13.2        | 311 |
|            |                                                                  |                    |    |            |                      | 65.6                     | 5.5            | 13.5        |     |
| <b>4</b> b | 2-Furanyl                                                        | $COCH_3$           |    | 72         | 145                  | 60.8                     | 3.6            | 10.6        | 258 |
|            | C **                                                             | CO F.              |    | =0         | 100 100              | 60.5                     | 3.9            | 10.9        |     |
| <b>4</b> e | $C_6H_5$                                                         | CO <sub>2</sub> Et |    | 70         | 180—182              | 64.3                     | 4.5            | 9.0         |     |
| 46         | 4 CH OC H                                                        | CO E               |    | 75         | 102 105              | 64.4                     | 4.7            | 9.4         | 200 |
| 4f         | $4-CH_3OC_6H_4$                                                  | CO <sub>2</sub> Et |    | <b>7</b> 5 | 193—195              | 62.1<br>62.2             | 4.5<br>4.9     | 8.1<br>8.5  | 328 |
| <b>4</b> g | 4-(CH <sub>3</sub> ) <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> | CO <sub>2</sub> Et |    | 70         | 244—245              | 63.8                     | 5.9            | 12.0        | 341 |
| 4g         | T-(CH3)2NC6H4                                                    | CO2Et              |    | 70         | 211—213              | 63.3                     | 5.6            | 12.3        | 311 |
| <b>4</b> h | 2-Furanyl                                                        | CO <sub>2</sub> Et |    | 80         | 238—240              | 58.2                     | 4.4            | 9.5         | 288 |
| •••        | 2 I dianiyi                                                      | GOZE               |    | 00         | 250 210              | 58.3                     | 4.2            | 9.7         | 200 |
| 5a         | $C_6H_5$                                                         | $COCH_3$           | Н  | 77         | 120—122              | 67.8                     | 4.9            | 9.5         |     |
|            | -03                                                              |                    |    |            |                      | 68.1                     | 5.0            | 9.9         |     |
| 5b         | 4-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub>                 | $COCH_3$           | H  | 75         | 135-136              | 65.6                     | 5.3            | 8.6         | 312 |
|            |                                                                  | ŭ                  |    |            |                      | 65.4                     | 5.1            | 9.0         |     |
| <b>5</b> c | $4-(CH_3)_2NC_6H_4$                                              | $COCH_3$           | H  | 75         | 116—117              | 66.6                     | 5.5            | 12.5        |     |
|            |                                                                  |                    |    |            |                      | 66.5                     | 5.8            | 129         |     |
| 5d         | 2-Furanyl                                                        | $COCH_3$           | Н  | 70         | 90—92                | 62.0                     | 4.0            | 9.9         |     |
|            |                                                                  |                    |    |            |                      | 61.8                     | 4.4            | 10.3        |     |
| 5e         | $C_6H_5$                                                         | $CO_2Et$           | H  | 70         | 87—88                | 65.7                     | 5.3            | 8.6         |     |
|            |                                                                  | 66 F               |    | =0         | 00 00                | 65.4                     | 5.1            | 9.0         |     |
| 5f         | $4-CH_3OC_6H_4$                                                  | $CO_2Et$           | H  | 73         | 80—82                | 62.9                     | 5.0            | 7.8         |     |
| <b>F</b>   | A (CII ) NC II                                                   | CO E               | ** | 00         | 120 140              | 63.2                     | 5.3            | 8.2         | 955 |
| 5g         | $4-(CH_3)_2NC_6H_4$                                              | CO <sub>2</sub> Et | Н  | 80         | 138—140              | 63.8                     | 5.5            | 11.5        | 355 |
| 5h         | 9 Europul                                                        | CO <sub>2</sub> Et | Н  | 72         | 85                   | 64.2<br>59.4             | 5.9<br>4.8     | 11.8<br>9.6 |     |
| 311        | 2-Furanyl                                                        | CO <sub>2</sub> Ei | п  | 14         | 03                   | 59. <del>4</del><br>59.6 | 4.6<br>4.6     | 9.6<br>9.3  |     |
|            |                                                                  |                    |    |            |                      | <i>5</i> 9.0             | 4.0            | 9.3         |     |

Table 1. (Continued)

| -          | 1                                                                | X                  | R                               | Yield<br>% | $_{oldsymbol{	heta_m}/^{\circ}C}^{\mathrm{Mp}}$ | Found/Calcd(%) |     |     |     |
|------------|------------------------------------------------------------------|--------------------|---------------------------------|------------|-------------------------------------------------|----------------|-----|-----|-----|
| Compour    | nd Ar                                                            |                    |                                 |            |                                                 | C              | Н   | N   | m/z |
| 6a         | $C_6H_5$                                                         | COCH <sub>3</sub>  | COC <sub>6</sub> H <sub>5</sub> | 70         | 143—145                                         | 71.2           | 4.5 | 6.9 |     |
|            |                                                                  |                    |                                 |            |                                                 | 71.5           | 4.7 | 7.2 |     |
| <b>6</b> b | $4-CH_3OC_6H_4$                                                  | $COCH_3$           | $COC_6H_5$                      | 70         | 150                                             | 69.0           | 4.7 | 6.5 | 416 |
|            |                                                                  |                    |                                 |            |                                                 | 69.2           | 4.8 | 6.7 |     |
| <b>6</b> c | $4-(CH_3)_2NC_6H_4$                                              | $COCH_3$           | $COC_6H_5$                      | <b>7</b> 3 | 190                                             | 69.5           | 5.0 | 9.5 |     |
|            |                                                                  |                    |                                 |            |                                                 | 69.9           | 5.4 | 9.8 |     |
| <b>6</b> d | 2-Furanyl                                                        | $COCH_3$           | $COC_6H_5$                      | 70         | 138—140                                         | 66.8           | 4.8 | 7.2 |     |
|            |                                                                  |                    |                                 |            |                                                 | 67.0           | 4.3 | 7.4 |     |
| <b>6</b> e | $C_6H_5$                                                         | $CO_2Et$           | $COC_6H_5$                      | 75         | 108—110                                         | 69.0           | 4.5 | 6.5 |     |
|            |                                                                  | _                  |                                 |            |                                                 | 69.2           | 4.8 | 6.7 |     |
| 6f         | 4-CH <sub>3</sub> OC <sub>6</sub> H <sub>4</sub>                 | CO <sub>2</sub> Et | $COC_6H_5$                      | 65         | 99—100                                          | 67.0           | 5.3 | 6.2 |     |
|            | • • •                                                            | -                  | 0 0                             |            |                                                 | 67.3           | 5.3 | 6.3 |     |
| 6g         | 4-(CH <sub>3</sub> ) <sub>2</sub> NC <sub>6</sub> H <sub>4</sub> | $CO_2Et$           | $COC_6H_5$                      | 60         | 163—165                                         | 68.2           | 5.0 | 9.1 |     |
| J          | . 3/2                                                            | _                  | 0 0                             |            |                                                 | 68.0           | 5.4 | 9.2 |     |
| <b>6</b> h | 2-Furanyl                                                        | $CO_2Et$           | $COC_6H_5$                      | 67         | 82—83                                           | 64.8           | 4.2 | 6.6 |     |
|            | ,                                                                | 2                  | 0 0                             |            |                                                 | 65.0           | 4.4 | 6.9 |     |

Table 2. Spectral Data of Compounds 4, 5, and 6

| Compound   | IR (KBr)/cm <sup>-1</sup>                | <sup>1</sup> H NMR (DMSO) δ/ppm                                                                                                                                                                                                                                                 |
|------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4b         | 3450 (NH); 2225 (CN); 1700 (CO)          | 1.92 (s, 3H, CH <sub>3</sub> ); 2.52 (s, 3H, CH <sub>3</sub> ); 3.80 (s, 3H OCH <sub>3</sub> ); 6.32—6.92 (m, 4H, $C_6H_4$ ); 13.95 (s, br 1H, NH)                                                                                                                              |
| <b>4</b> e | 3300—3200 (NH); 2220 (CN); 1680 (CO)     | 0.92 (t, $J$ =7 Hz, 3H, CH <sub>3</sub> ); 2.66 (s, 3H, CH <sub>3</sub> ); 4.00 (q, $J$ =7 Hz, 2H, CH <sub>2</sub> ); 7.27—7.56 (m, 5H, C <sub>6</sub> H <sub>5</sub> ); 13.98 (s, br, 1H, NH)                                                                                  |
| <b>4</b> f | 3400 (NH); 2215 (CN); 1720 (CO)          | 0.89 (t, $J$ =7 Hz, 3H, CH <sub>3</sub> ); 2.22 (s, 3H, CH <sub>3</sub> ); 3.82 (s, 3H, OCH <sub>3</sub> ); 3.99 (q, $J$ =7 Hz, 2H, CH <sub>2</sub> ); 7.02—7.42 (m,4H, C <sub>6</sub> H <sub>4</sub> ); 13.8 (s, br 1H, NH)                                                    |
| 4h         | 3250 (NH); 2215 (CN); 1730 (CO)          | 1.1 (t, <i>J</i> =7 Hz, 3H, CH <sub>3</sub> ); 2.42 (s, 3H, CH <sub>3</sub> ); 4.18 (q, <i>J</i> =7 Hz, 2H, CH <sub>2</sub> ); 6.82 (m, 1H furan H-3); 7.42 (d, <i>J</i> =6 Hz, 1H, furan H-4); 8.18 (d, <i>J</i> =6 Hz, 1H, furan H-5); 13.88 (s, br, 1H, NH)                  |
| 5a         | 2220 (CN); 1700 (CO)                     | 1.85 (s, 3H, CH <sub>3</sub> ); 2.55 (s, 3H, CH <sub>3</sub> ); 2.65 (s, 3H, SCH <sub>3</sub> ); 7.32—7.60 (m, 5H, C <sub>6</sub> H <sub>5</sub> )                                                                                                                              |
| 5b         | 2220 (CN); 1690 (CO)                     | 1.66 (s, 3H CH <sub>3</sub> ); 2.22 (s, 3H, CH <sub>3</sub> ); 2.68 (s, 3H, SCH <sub>3</sub> ); 3.42 (s, 3H, OCH <sub>3</sub> ); 6.5—6.8 (m, 4H, C <sub>6</sub> H <sub>4</sub> )                                                                                                |
| 5d         | 2220 (CN); 1700 (CO)                     | 2.22 (s, 3H, CH <sub>3</sub> ); 2.55 (s, 3H, SCH <sub>3</sub> ); 2.66 (s, 3H, CH <sub>3</sub> ), 6.68 (m, 1H, furan H-3); 7.22 (d, <i>J</i> =6 Hz, 1H furan H-4); 7.65 (d, <i>J</i> =6 Hz, 1H, furan H-5)                                                                       |
| 5f         | 2220 (CN); 1715 (CO)                     | 0.94 (t, $J$ =7.5 Hz, 3H, CH <sub>3</sub> ); 2.33 (s, 3H, CH <sub>3</sub> ); 2.41 (s, 3H, SCH <sub>3</sub> ); 3.40 (s, 3H, OCH <sub>3</sub> ); 3.81 (q, $J$ =7.5 Hz, 2H, CH <sub>2</sub> ); 6.32—6.88 (m, 4H, C <sub>6</sub> H <sub>4</sub> )                                   |
| 5g         | 2220 (CN); 1715 (CO)                     | 0.96 (t, $J$ =7.5 Hz, 3H, CH <sub>3</sub> ); 2.30 (s, 3H, CH <sub>3</sub> ); 2.35 (s, 3H, SCH <sub>3</sub> ); 2.68 (s, 6H, N(CH <sub>3</sub> ) <sub>2</sub> ); 3.88 (q, $J$ =7.5 Hz, 2H, CH <sub>2</sub> ); 6.44—678 (m, 4H, C <sub>6</sub> H <sub>4</sub> )                    |
| 5h         | 2220 (CN); 1730 (CO)                     | 1.25 (t, $J$ =7.5 Hz, 3H, CH <sub>3</sub> ); 2.62 (s, 3H, CH <sub>3</sub> ); 2.68 (s, 3H, SCH <sub>3</sub> ); 4.22 (q, $J$ =7.5 Hz, 2H, CH <sub>2</sub> ); 6.60 (m, 1H, furan 3-H); 7.25 (d, $J$ =6 Hz, 1H, furan 4-H); 7.64 (d, $J$ =6 Hz, 1H, furan 5-H)                      |
| 6a         | 3400, 3200 (NH <sub>2</sub> ); 1700 (CO) | 2.00 (s, 3H, CH <sub>3</sub> ); 2.26 (s, 3H, CH <sub>3</sub> ); 6.66 (s, br, 2H, NH <sub>2</sub> ); 7.22—7.88 (m, 10H, 2C <sub>6</sub> H <sub>5</sub> )                                                                                                                         |
| 6b         | 3500, 3200 (NH <sub>2</sub> ); 1700 (CO) | 2.00 (s, 3H, CH <sub>3</sub> ); 2.32 (s, 3H, CH <sub>3</sub> ); 3.8 (s, 3H, OCH <sub>3</sub> ); 6.06—7.23 (m, 11H, $C_6H_5$ , $C_6H_4$ and $NH_2$ )                                                                                                                             |
| <b>6</b> d | 3400—3200 (NH <sub>2</sub> ); 1710 (CO)  | 2.08 (s, 3H, CH <sub>3</sub> ); 2.58 (s, 3H, CH <sub>3</sub> ); 6.68 (m, 2H, furan 3,4-H); 7.08 (s, br, 2H, NH <sub>2</sub> ); 7.42 (d, $J$ =6.5 Hz, 1H, furan 5-H); 7.48—7.92 (m, 5H, C <sub>6</sub> H <sub>5</sub> )                                                          |
| <b>6</b> g | 3450 (NH <sub>2</sub> ); 1718 (CO)       | 1.1 (t, $J$ =7.5 Hz, 3H, CH <sub>3</sub> ); 2.62 (s, 3H, CH <sub>3</sub> ); 3.08 (s, 6H, N(CH <sub>3</sub> ) <sub>2</sub> ); 4.20 (q, $J$ =7.5 Hz, 2H, CH <sub>2</sub> ); 6.7—7.88 (m, 11H, C <sub>6</sub> H <sub>5</sub> , C <sub>6</sub> H <sub>4</sub> and NH <sub>2</sub> ) |

7.00 assigned for aromatic protons (cf. Table 2). The formation of 4 from the reaction of 1 with 2 is assumed to proceed via Michael type addition of the methylene function in 2 to the activated double bond in 1 to yield acyclic Michael adducts 3 which then loses  $H_2O$  and cyclizes into the final isolable stable compounds 4.

Subjecting the potassium salts of 4 to the action of alkylating agents such as methyl iodide afforded the corresponding S-alkyl derivatives 5. The sturcture of 5 was inferred from analysis, MS and <sup>1</sup>H NMR. When using phenacyl bromide as alkylating agent, the Salkylated derivative can not be isolated, but cyclized into thieno[2,3-b]pyridines **6**. The structure of 6a could be established for the reaction product based on the absence of a CN absorption in the IR spectrum and on <sup>1</sup>H NMR which revealed two singlets at  $\delta$  2.00 and 2.26 assignable for two methyl groups, a broad band at  $\delta$  6.66 assignable to amino group, and a multiplet at  $\delta$  7.22—7.88 assigned for aromatic protons (cf. Table 2). The formation of 6 from reaction of 4 with phenacyl bromide constitutes a new synthesis of thieno[2,3-b]pyridine derivatives.

## **Experimental**

All melting points are uncorrected. Analytical data were obtained from the Microanalytical Data Unit at Cairo University. The IR spectra were obtained on a Pye-Unicam SP-1000 spectrophotometer.  $^1H$  NMR spectra were measured in DMSO or CDCl $_3$  on a Varian EM-360-60 MHz using TMS as internal standard and chemical shifts are expressed as  $\delta$  ppm. Mass spectra were recorded on a Varian MAT 112 spectrometer.

Compounds **la—d** were prepared following literature procedure.<sup>7)</sup>

5-Substituted 4-Aryl-3-cyano-6-methyl-2(1H)-pyridine-thione (4a—d). General Procedure: To a mixture of arylmethylenecyanothioacetamide 1 (0.01 mol) and acetylacetone 2a or ethyl acetacetate 2b (0.01 mol) in ethanol (50 ml), piperidine (a few drops) is added. The mixture is heated under reflux for 3 h, and then allowed to stand overnight. The resultant precipitate is isolated by suction and crystallized.

5-Substituted 4-Aryl-3-cyano-6-methyl-2-(methylthio)pyridines (5a—d). General Procedure. A mixture of 4 (0.01 mol), KOH powder (0.02 mol), and MeI (0.02 mol) in dry  $\mathrm{CH_2Cl_2}$  (50 ml) was stirred at room temperature for 3 h and then diluted with cold water (100 ml). The dichloromethane layer was washed several times with water, dried and then evaporated. The resulting solid product was collected by filteration and crystallized.

Thieno[2,3-b]pyridine Derivatives (6a—d). General Procedure: A mixture of 4 (0.01 mol),  $K_2CO_3$  (0.02 mol), and phenacyl bromide (0.01 mol) in dry DMF (50 ml) was stirred at room temperature for 3 h and then diluted with cold water (50 ml). The resulting solid product was collected by filteration and crystallized.

## References

- 1) G. E. H. Elgemeie and F. A. Aal, *Heterocycles*, **24**, 349 (1986).
- 2) G. E. H. Elgemeie, M. M. Sallam, S. M. Sherif, and M. H. Elnagdi, *Heterocycles*, 23, 3107 (1985).
- 3) G. E. H. Elgemeie, A. M. Gohar, H. A. Regaila, and H. A. Elfahham, Arch. Pharm. (Weinheim), 331, 131 (1988).
- 4) G. E. H. Elgemeie, H. A. Elfahham, S. M. Hassan, and M. H. Elngadi, Z. Naturforsch., **38b**, 781 (1983).
- 5) G. E. H. Elgemeie, H. A. Elfahham, S. Elgamal, and M. H. Elnagdi, *Heterocycles*, 23, 1999 (1985).
- 6) G. E. H. Elgemeie, B. Y. Riad, G. A. Nawwar, and S. Elgamal, *Arch. Pharm.* (Weinheim), **320**, 223 (1987).
- 7) J. S. A. Brunskill and Asish De, J. Chem. Soc., Perkin Trans. 1, 1978, 629.